Cavity collapse near porous plates

Elijah Andrews - University of Southampton David Fernández Rivas - University of Twente Ivo Peters – University of Southampton

Aero/Astro **Research Day 2022**

Introduction

Collapsing bubbles can be used as a practical cleaning method^[1] for complex geometries that are now more common due to developments of new manufacturing methods such as 3D printing.

A bubble collapsing in an infinite fluid collapses symmetrically. However, when a bubble collapses near a solid boundary, the bubble collapses highly asymmetrically and forms a high-speed jet that can be used to clean the surface.

Measuring Displacement

Bubble collapses close to boundaries have a stronger asymmetry than collapses far from boundaries. We quantify the asymmetry by measuring the displacement (Δ) of the bubble between its first (*R*) and second radius maxima.

1mm

Problem Definition

Porous materials, such as filters, are common and can be treated with ultrasonic cleaning^[2]. We want to understand how these materials affect bubbles collapsing nearby.

To do this, we investigate the simplest form of porous material: a thin plate with circular through-holes (pictured right).

Qualitatively, we would predict that a porous plate would cause a stronger asymmetry than a solid plate because it is effectively somewhere between a solid plate and an open fluid.

Effect Of Horizontal Position

At the extremes, bubbles can be above a hole or between three holes. Surprisingly, these two cases produce indistinguishable collapse displacements.

Bubbles expand more towards holes when collapsing between holes.

Effect Of Standoff And Void Fraction

This plot shows the variation of dimensionless displacement with dimensionless standoff distance γ .

For each plate, as the standoff distance increases, the bubble displacement decreases.

When the bubble is above a hole, it collapses through the hole.

Numerical Modelling

We have extended our previous BEM model^[3] to produce a parameter ζ that has been used to predict collapse properties.^[4] ζ is a measure of the asymmetry present in the system. This plot (below) shows how our model for ζ causes the dimensionless bubble displacement to collapse onto a single curve.

A solid plate causes the largest bubble displacements, with the bubble displacement decreasing as the void fraction of the plate, ϕ , increases.

Essentially, the less plate there is, the more symmetric the bubble collapse.

Conclusion

In this work, we have shown how holes in a boundary reduce the asymmetry of bubble collapse near a boundary. Surprisingly, the horizontal position of the bubble does not have a significant effect. We have developed a numerical model capable of predicting this behaviour that we will use to quantify the relationship between void fraction and bubble displacement.

References

MESA+

INSTITUTE

UNIVERSITY

OF TWENTE.

[1] B. Verhaagen, T. Zanderink, D. Fernandez Rivas, Ultrasonic cleaning of 3D printed objects and Cleaning Challenge Devices. *Applied Acoustics*. **103**, 172–181 (2016). [2] F. Reuter, S. Lauterborn, R. Mettin, W. Lauterborn, Membrane cleaning with ultrasonically driven bubbles. *Ultrasonics Sonochemistry*. **37**, 542–560 (2017). [3] E. D. Andrews, D. Fernandez Rivas, I. R. Peters, Cavity collapse near slot geometries. Journal of Fluid Mechanics, 901, 29–29. (2020). [4] O. Supponen et al. Scaling laws for jets of single cavitation bubbles. Journal of Fluid Mechanics. 802, 263-293 (2016).

e.d.andrews@soton.ac.uk

