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A gas or vapour bubble near a solid boundary collapses towards the boundary due to the

asymmetry induced by the nearby boundary. High surface pressure and shear stress from

this collapse can damage, or clean, the surface. A porous boundary, such as a filter, would

act similarly to a solid boundary but with reduced asymmetry and thus reduced effect. Prior

research has measured the cleaning effect of bubbles on filters using ultrasonic cleaning, but

it is not known how the bubble dynamics are fundamentally affected by the porosity of the

surface. We address this question experimentally by investigating how the standoff distance,

porosity, pore size, and pore shape affect two collapse properties: bubble displacement

and bubble rebound size. We show that these properties depend primarily on the standoff

distance and porosity of the boundary and extend a previously developed numerical model that

approximates this behaviour. Using the numerical model in combination with experimental

data, we show that bubble displacement and bubble rebound size each collapse onto respective

single curves.

1. Introduction

Collapsing bubbles can be found in numerous physical systems. Typically this involves

bubbles collapsing in proximity to various boundaries. The high surface pressures and shear

stresses generated by collapsing bubbles can damage, or clean, the boundary. This cleaning

effect can be harnessed through processes such as ultrasonic cleaning (Reuter & Mettin 2016)

which can involve complex geometries (Verhaagen et al. 2016).

Single bubbles collapsing near simple geometries, such as flat rigid boundaries, have

been widely investigated. Much of this research has focused on understanding bubble

morphology and jetting (Kröninger et al. 2010; Zhang et al. 2019), nearby surface shear

stress (Koukouvinis et al. 2018), surface pressure (Benjamin & Ellis 1966; Li et al. 2016),

and surface damage (Sagar & el Moctar 2020).

There has been a recent effort to characterise single bubble collapse in a range of

complex geometries. For example, characterising jet direction in a selection of geometries

including in concave corners (Tagawa & Peters 2018), inside rectangular and triangular

prisms (Molefe & Peters 2019), above slots (Andrews et al. 2020), and in the corner of

a wall and a free surface (Kiyama et al. 2021). Bubble morphology, flow properties, and

jetting behaviours have also been investigated in combinations of concave corners and
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free surfaces (Zhang et al. 2017; Brujan et al. 2018), between two parallel rigid boundaries

(Brujan et al. 2019; Rodriguez et al. 2022), inside a slot (Brujan et al. 2022), on a convex

corner (Zhang et al. 2020), on a crevice (Trummler et al. 2020), and on ridge-patterned

structures (Kim & Kim 2020; Kadivar et al. 2022). Nevertheless, there remain fundamental

complex geometries that have yet to be explored.

Porous materials are a large family of complex geometries with a wide range of appli-

cations. Broadly, they could be categorised as connected or unconnected. One example of

an unconnected porous material is a bed of sand, such as those investigated by Sieber et al.

(2022). The sand creates pores which are permeated by water, but the grains are able to

separate which allows for significant deformation of the bed. The influence of the bubble on

the boundary is shown to depend on the granular size of the sand, including behaviors such as

granular jets and displacement of the boundary material. However, the boundary is modelled

as a liquid-liquid interface and it is shown that the bubble rebound and displacement are

principally driven by the density difference between the pliable granular suspension and the

water.

Connected porous materials have a wide range of applications, of which one very practical

application is filters. Filters are typically porous materials through which a fluid is passed

in order to remove contamination. This contamination builds up on the filter, reducing

performance. Ultrasonic cleaning can be applied to filters in order to remove the built-up

contamination from the filter (Reuter et al. 2017).

The simplest example of a porous material is a flat plate with a pattern of through-holes.

Some research has investigated the problem of a plate with a through-hole bounding a free

surface in relation to breaches of maritime hulls (He et al. 2021; Cui et al. 2021, 2022).

Similarly, Sun et al. (2022b) investigated bubble collapse near a rigid surface with a gas-

entrapping hole. This concept was also investigated by Gonzalez-Avila et al. (2020) and

Sun et al. (2022a), who considered surfaces with a pattern of gas-entrapping holes. In all

these cases, bubbles were found to translate away from the boundary, acting analogously to

a typical free surface.

Liu et al. (2017) investigated a bubble collapsing between a free surface and a submerged

solid boundary with a through-hole. Bubbles collapsing close to a fully submerged rigid

boundary with a single through-hole have also been investigated, both experimentally

(Lew et al. 2007; Karri et al. 2011; Abboud & Oweis 2013) and numerically (Khoo et al.

2005). Similarly, Moloudi et al. (2019) numerically investigated bubble collapse dynamics

close to a convex boundary with a through-hole. These investigations revealed similar

tendencies of the bubbles during collapse, such as the bubble translating towards and through

the holes, the bubble surface expanding into the holes, and stronger counter-jetting than solid

plates.

In this research, we investigate a less-studied phenomenon: how a series of porous plates

affect bubble collapse dynamics. We include some comments on bubble morphology and

measurements of bubble displacement and bubble rebound radius.

2. Problem definition

We define a porous plate as a thin, rigid plate with a pattern of through-holes. The plate

thickness is defined as �, with through-holes of characteristic length, and spacing (. Three

shapes of hole are investigated: circles, squares, and triangles. Circles are the smoothest

possible hole shape and triangles are the least-smooth regular polygon, with the tightest

corner angle. Squares are somewhere between the two and are used to achieve high void

fractions due to their efficient tessellation packing. Schematics of these arrangements are

shown in figure 1(a-c). The void fraction q is defined as the fraction of the total plate area



Bubble collapse near porous plates 3

R

Y

W

S S

W

S

W

H

(a) (b) (c) (d)

Figure 1: Top-down view schematic diagrams of porous plates with patterns of circular
(0), square (1), or triangular (2) holes. Orange circles mark horizontal positions above a

hole and green crosses mark horizontal positions between-holes. (3) Side-on cross-section
view of a porous plate with a bubble positioned vertically above it.
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Bubbles are positioned vertically at a distance . from the boundary with time-variant

radius ' and maximum radius '0. These parameters are shown in figure 1(d). Horizontally,

the bubble can be positioned in two dimensions with varying proximity to the holes. We

identify the two extreme cases as a bubble directly over a hole and a bubble directly over the

plate between holes. These two cases represent the minimum and maximum area of solid

boundary near the bubble. The horizontal positions of bubbles above holes are shown by

the orange circles in figure 1. The horizontal positions of bubbles above the plate between

holes are shown by the green crosses in figure 1 and are usually referred to hereafter as

‘between-holes’.

The vertical distance of the bubble is normalised by the maximum bubble radius to

produce the dimensionless standoff distance W = ./'0. The hole size is also normalised with

the maximum bubble radius, ,/'0.

In this research we investigate fixed, rigid plates with a constant thickness � = 1 mm and

compare only the effects of bubble position and hole geometry.

3. Methods

3.1. Experimental method

Experiments were performed using laser-induced cavitation. Laser-induced cavitation oper-

ates by focusing a laser pulse at a point in a volume of water (Lauterborn 1972). The high

energy at the focal point forms a plasma which rapidly heats and vaporises the surrounding

water, creating a bubble. The focusing optics are typically either a microscope objective or a
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parabolic mirror. In our previous research, using a microscope objective, we showed that bub-

bles with greater asymmetry lead to greater spread of experimental measurements of bubble

displacement (Andrews & Peters 2022). Thus, following the example of Obreschkow et al.

(2013), we have implemented an off-axis parabolic mirror setup, as shown in figure 2. This

method produces more consistent bubbles with improved symmetry, reducing the spread of

data. In addition, the larger focusing angle (with a higher equivalent numerical aperture),

allows for larger bubbles to be generated without nucleating additional bubbles nearby.

In this research, a Q-switched Nd:YAG laser (‘Nano PIV’ from Litron Lasers) was used to

generate an 8 ns pulse at a wavelength of 532 nm. The laser output energy was approximately

97 mJ and was subsequently attenuated with the attenuator set to between 70 % and 75

%. The beam was restricted by an iris to be approximately 3 mm in diameter, in order

to remain well-collimated after expansion, and then expanded with a 10x beam expander

to approximately 30 mm in diameter. The expanded beam was focused by a gold off-axis

parabolic mirror with a focusing angle of approximately 41 degrees (equivalent numerical

aperture = 0.35). This methodology produced bubbles with radii ranging from 1.07 mm to

1.65 mm. Notably, the gold surface absorbs most of the laser energy, but is less likely to

degrade when immersed in water when compared to mirror materials designed to operate

with a 532 nm laser (Obreschkow et al. 2013). However, a recent study has reported use of

an aluminium off-axis parabolic mirror (Sieber et al. 2022) so the degradation concern may

not be as significant as originally assumed.

Porous plates were created by laser cutting 50 mm × 50 mm plates out of stainless steel

with a thickness of 1 mm. Stainless steel was selected to ensure rigidity in the plates because

other materials, such as 1 mm acrylic, flex significantly under the load of a bubble collapsing,

which is known to reduce or reverse displacement (Gibson & Blake 1982; Brujan et al. 2001).

Holes had characteristic lengths between 0.40 mm and 4.79 mm, primarily limited at the low

end by laser cut quality. Due to the position of the bubble in close proximity to the plate, the

diverging laser impinges upon the plate. If the plate is sufficiently close to the focal point,

or the focal angle is narrow, the plate can absorb a significant amount of laser energy which

can then nucleate a second bubble at the surface of the material. This nucleation is shown

in figure 3. In order to stop significant surface nucleation, the plates were polished to reduce

laser energy absorption by increasing the reflectivity. All geometries used are listed in table

1 with measurements of the geometric parameters and range of bubble sizes.

The porous plates were attached to an arm which was moved by a translation stage. The

porous plates were submerged in a 174 mm × 180 mm × 177 mm glass tank of purified

and partially degassed water as shown in figure 2. The bubbles were back-lit by a 100 W

LED panel and recorded at 100 000 frames per second with a high-speed camera (Photron

FASTCAM SA-X2 with a 105 mm Nikon Micro-Nikkor lens). A 550 nm longpass filter was

used to protect the camera from the laser.

The experiment produced shadowgraph movies of the bubbles which were then analysed

with automatic image analysis software written in Python. The three parameters that were

extracted from these measurements were the maximum bubble radius '0; the bubble

maximum radius after the first rebound '1; and the displacement of the bubble between

the two radius maxima Δ. These measurements are shown in figure 4.

3.2. Numerical model

Bubbles collapsing in complex geometries experience varied degrees of asymmetry. This

asymmetry can be quantified with the ‘anisotropy parameter’ Z , a dimensionless equivalent

of the Kelvin impulse, which can predict several bubble collapse properties (Supponen et al.

2016, 2017, 2018).

We have previously presented a numerical model, based on the boundary element
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Figure 2: Schematic showing the experimental setup for laser-induced cavitation using an
off-axis parabolic mirror to generate bubbles near a porous plate.

t = 0 µs t = 30 µs t = 100 µs t = 160 µs t = 190 µs

1 mm

Figure 3: Frames showing the expansion and collapse of two bubbles, one nucleated at the
laser focal point and one simultaneously nucleated where the laser impinges on a nearby

steel plate. An approximate scale bar is given.

Hole shape q (%) , (mm) � (mm2) '̄0 (mm)

solid - - - 1.50
circles 7.3 1.15 1.04 1.48
circles 11.5 0.40 0.12 1.49
triangles 13.4 1.10 0.52 1.33
circles 14.6 1.15 1.04 1.45
circles 21.6 1.14 1.02 1.50
circles 22.7 4.79 18.02 1.43
squares 22.9 1.96 3.84 1.34
triangles 23.1 2.35 2.40 1.31
circles 23.3 2.37 4.41 1.41
triangles 25.9 1.08 0.50 1.33
circles 29.3 1.15 1.04 1.57
circles 35.6 1.13 1.01 1.45
circles 40.7 1.11 0.96 1.51
triangles 44.1 1.60 1.11 1.33
squares 44.7 1.94 3.77 1.42
squares 52.7 1.94 3.78 1.32
squares 59.4 1.94 3.75 1.39

Table 1: All experimental geometries used in this research. Ordered by void fraction q and
showing hole shape; hole characteristic width , ; hole area �; and mean bubble size '̄0.
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t = 0 µs

(a)
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1 mm
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Figure 4: (0) Frames from a high-speed recording of a bubble expanding and collapsing
near a porous boundary. Frames at radius maxima (C = 140 `s and C = 340 `s) feature a
circle overlay with area equivalent to the bubble area. (1) Bubble radius variation with

time. (2) Composite image of the two frames recorded at the radius maxima indicated in
(1) showing measurements of the radius maxima '0 and '1 and bubble displacement Δ.

method, capable of predicting the anisotropy parameter for arbitrary rigid geometries

(Andrews & Peters 2022). This model assumes that the bubble can be treated as a fixed

three-dimensional point sink in potential flow with a strength depending on the bubble radius

and radial velocity of the bubble surface which are calculated by numerically solving the

Rayleigh-Plesset equation. Nearby boundaries are modelled by a distribution of point sink

elements and the no-through-flow boundary condition is imposed at their centroids. Each

element 8 has a constant sink strength density f8 across its surface and area �8 such that the

sink strength of the centroid point sink is f8�8 and the velocity induced at a point 9 by the

element 8 is

∇q| 9 =
f8�8 (x 9 − x8)
4c |x 9 − x8 |3

, (3.1)

where q is the velocity potential, x 9 is a point in the fluid, and x8 is the centroid position of

the element 8.

The bubble is assumed to be stationary and the integral of pressures on the boundary

surface is calculated and integrated over time. This allows the Kelvin impulse to be estimated

and then non-dimensionalised to the anisotropy parameter Z .

Porous plates could be directly modelled this way, however a high number of elements
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t = 129 µs t = 279 µs t = 319 µs t = 359 µs t = 369 µs t = 459 µs

1 mm

Figure 5: Frames from a high-speed recording of a bubble collapsing with a strong jet
passing through a hole in a porous plate with void fraction q = 44.7 % and square holes of

size , = 1.94 mm. A cross-section of the plate at the bubble position is superimposed
with hatched areas indicating the solid part of the plate.

would be required to adequately resolve the holes. Here we propose an adaptation of the

previous model that does not require each hole to be resolved separately.

By assuming that the plate has zero thickness, the plate can be modelled with a single layer

of boundary elements. Elements could then be constructed to surround the holes, however this

would simply act to redistribute the element centroids and reduce the overall area. Instead,

we assume that the plate is homogeneous, and simply scale the element areas using the void

fraction so that the porous element area �8 is

�8 = (1 − q)�8B (3.2)

where �8B is the area of the equivalent solid element. This method assumes that the shape of

the holes doesn’t matter, and that the holes are small enough that any difference in horizontal

position is negligible.

After scaling the areas, the boundary element method solution can proceed as usual, using

the reduced �8 for both the boundary conditions and pressure integration. We have previously

presented the core boundary element method procedure (Andrews et al. 2020) and anisotropy

computations (Andrews & Peters 2022) in detail.

4. Experimental Results

4.1. Bubbles close to porous boundaries

Bubbles collapsing in close proximity to porous boundaries show a broad range of interesting

dynamics. In this section, frames from high-speed recordings of five bubble collapses are

presented, demonstrating some of these dynamics.

When bubbles collapse close to solid boundaries, they produce strong jets that often

impinge on the boundaries. When the bubble is nucleated above a hole (positioned above the

orange circles in figure 1), these jets can propagate through the hole, producing very long

regions of entrained vapour. One such example is shown in figure 5. In this figure, an average

jet velocity of 39 m s−1 is found between C = 279 `s and C = 319 `s. The frame at C = 359

`s shows that the vapour entrained by the jet extends beyond the bottom of the frame. This

region of vapour then itself very rapidly collapses, as seen at C = 369 `s, followed by the rest

of the bubble collapsing down towards the hole.

As well as allowing jets to pass through the holes, the holes reduce the impedance of the

boundary. Bubbles collapse towards solid boundaries because the solid boundary impedes

the flow out from the bubble during expansion and into the bubble during collapse. This
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t = 0 µs t = 80 µs t = 160 µs t = 240 µs t = 300 µs t = 410 µs

1 mm

Figure 6: Frames from a high-speed recording of a bubble collapsing through a hole in a
porous plate with void fraction q = 21.6 % and circular holes of size , = 1.14 mm. A

cross-section of the plate at the bubble position is superimposed with hatched areas
indicating the solid part of the plate.

t = 0 µs t = 60 µs t = 80 µs t = 230 µs t = 280 µs t = 400 µs

1 mm

Figure 7: Frames from a high-speed recording of a bubble collapsing above the area
between four holes in a porous plate with void fraction q = 44.7 % and square holes of
size , = 1.94 mm. A cross-section of the plate through the row of holes in front of the

bubble is superimposed with hatched areas indicating the solid part of the plate.

results in the opposite side of the bubble expanding and collapsing much faster, leading to

the overall motion towards the boundary (Blake 1983). When the bubble is directly over a

hole (positioned above the orange circles in figure 1), the hole does not impede the bubble

expansion and collapse. Figure 6 shows one such configuration. Initially, the bubble expands

mostly spherically. However, the bottom of the bubble, positioned directly over the hole,

expands more than the rest of the lower side, resulting in a protrusion visible in the frame at

C = 80 `s. The protrusion expands into the hole when the bubble is at its maximum size at

C = 160 `s. Subsequently, during collapse, the protrusion entirely withdraws by C = 240 `s,

with a clear gap visible between the now-flattened lower surface and the boundary. Due to the

low impedance of the hole compared to the surrounding boundary, the center of the bottom

side of the bubble continues collapsing much more rapidly than the surrounding areas. This

leads to a full inversion of the bottom of the bubble, visible by the upward-facing triangular

jet entering from the bottom side of the bubble at C = 300 `s. These qualitative observations

agree well with those reported by Khoo et al. (2005). The bubble then fully collapses and

re-expands by C = 410 `s. It is interesting to note in the frame at C = 410 `s that the bubble

undergoes a rapid ejection event on the upper right surface, the cause of which is unknown.

The bubble goes on to travel through the hole, breaking up as it goes.

Bubbles positioned above the solid boundary between holes also expand preferentially

towards nearby holes. Figure 7 shows a bubble positioned between four square holes (above

the green cross in figure 1b). At the lower edge of the bubble, the areas closest to the holes

expand more than the center. These appear as two sharper protrusions on either side of the

bottom of the bubble in the frames at C = 60 `s and C = 80 `s. On the boundary, an extremely
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t = 130 µs t = 170 µs t = 220 µs t = 250 µs t = 260 µs t = 270 µs

1 mm

Figure 8: Frames from a high-speed recording of a bubble collapsing above the area
between two holes in a porous plate with void fraction q = 44.7 % and square holes of
size , = 1.94 mm. A cross-section of the plate at the bubble position is superimposed

with hatched areas indicating the solid part of the plate.

small bubble is nucleated by the laser impinging on the boundary. This bubble is visible in

the first three frames as a shadow directly below the main bubble. The main bubble, however,

does not contact the boundary at the center until the frame at C = 230 `s, showing how

the solid parts of the boundary strongly limit the growth and collapse of the bubble when

compared to the holes. As the bubble begins to collapse, surface instabilities become visible

in the frame at C = 230 `s, growing initially from the holes and spreading across the bubble

surface. The top surface of the bubble rapidly collapses, leaving an indentation on the top of

the collapsing bubble at C = 280 `s. The bubble then re-expands along the solid parts of the

boundary, splitting into multiple sections visible at C = 400 `s.

These effects can be further explored by observing a bubble positioned between just

two holes. This case is shown in figure 8. As in figure 7, the bubble in figure 8 expands

preferentially towards the nearby holes. Again, protrusions are visible on either side of

the lower surface of the bubble. However, as the bubble collapses, the motion of these

protrusions is in the camera plane and so can be more clearly observed. The surface of the

bubble directly adjacent to the solid part of the boundary remains significantly impeded

throughout the collapse and so does not move significantly. At C = 170 `s the two expanded

protrusions have begun to collapse towards bubble centroid. As the collapse advances the

protrusions retain their additional curvature, forming ‘ears’ on either side of the bubble which

are visible until C = 270 `s. The longevity of these ears is a surprising feature as the areas of

a bubble with greatest curvature are expected to collapse most rapidly (Lauterborn 1982).

We note here that the rapid jet, often seen around the time of the first re-expansion of

the bubble, is not always aligned with the overall motion of the bubble. This suggests that

small asymmetries in the initial plasma formation may affect the bubble dynamics beyond the

initial formation and expansion, despite the bubble being very spherical at its maximum size.

The mechanism for this behaviour could be some history of the initial plasma and expansion

being retained due to insufficient mixing and homogenisation of the internal gases of the

bubble. An example of an offset jet is shown in figure 9 where the bubble is collapsing near

a solid plate. Despite the bubble appearing very spherical at its maximum size, and the plate

being highly symmetric, the jet that appears at C = 400 `s is clearly offset from the vertical

axis (shown by the grey dashed line). Although this jet is strong, it does not affect the overall

motion of the bubble as the bubble proceeds to collapse in the expected vertical direction.

This effect is visible in data sets we have previously used (Andrews & Peters 2022) and can

be found in some other publications such as figure 5 in Požar et al. (2021) and figure 4(a) in

Sieber et al. (2022).
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t = 10 µs t = 150 µs t = 400 µs t = 450 µs t = 500 µs t = 780 µs

1 mm

Figure 9: Frames from a high-speed recording of a bubble collapsing above a solid
boundary. The horizontal position of the bubble at its maximum size is shown by the grey
vertical line in each frame. The plate is indicated by the hatched grey area at the bottom of

the frame.
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Figure 10: (0) Normalised displacement plotted against standoff distance. (1) Normalised
rebound radius plotted against standoff distance. Blue diamonds are data from bubbles
collapsing near a solid plate. Orange circles are data from bubbles collapsing near a

porous plate.

4.2. Variation of displacement and rebound radius with standoff distance

Bubble displacement Δ/'0 and rebound radius '1/'0 are known to depend strongly on the

standoff distance W = ./'0 (Supponen et al. 2016, 2018). In figure 10, the blue data points

are experimental data from bubbles collapsing near a solid plate. As the standoff distance

increases, the displacement decreases, approximately following a power law. Similarly, the

rebound radius decreases as the standoff distance increases, although this approximately

follows a log law rather than a power law. A porous plate impedes flow, but to a lesser

degree than a solid plate. Thus, it induces a lesser displacement and rebound radius than a

solid plate as shown by the orange data in figure 10. For the porous plate, the displacement

approximately follows a power law and the rebound radius approximately follows a log law,

which are the same trends as for the solid plate.

4.3. Comparing horizontal position, hole size, and hole shape

Many parameters govern the porous plate and a vast number of plates could be considered

with a range of hole shapes and sizes. In addition, the bubble can vary in position relative to
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the plate both horizontally and vertically. In order to reduce the parameter space, it is thus

desirable to determine which parameters can be considered negligible.

As discussed in section 2, the horizontal position of the bubble has two extremes: above a

hole (above the orange circles in figure 1), or directly above an area of plate between holes

(above the green crosses in figure 1). Intuitively, it can be understood that a bubble above

a hole will displace less than a bubble above solid boundary because the fluid does not

impede the collapse of the bottom of the bubble. In the limiting case of an infinitely large

hole, the bubble experiences no asymmetry, and thus no displacement. Conversely, with a

fixed void fraction, infinitely large holes produce infinitely large spaces between holes. Thus,

for bubbles nucleated between-holes, the bubble is no longer affected by the holes and so

tends towards the solution for a simple solid plate. However, for sufficiently small holes, the

difference between bubbles collapsing above a hole and bubbles collapsing between-holes is

expected to become negligible.

Here we define a dimensionless area parameter �′ to be the ratio between the area of one

tessellation unit and the projected area of the bubble. The tessellation unit area is the total

area that would be used to calculate the void fraction of one hole. These units are shown

graphically in figure 11. Thus, the parameter �′ is defined as

�′
=

�

qc'̄0
2

(4.1)

where � is the area of one hole and '̄0 is the mean maximum bubble radius of bubble

collapse experiments near the plate.

Figure 12 shows data for four different plates. One plate has very large tessellation unit

area compared to the average bubble size (�′
= 12.54), while the other three have area

ratios in the range 1.78 6 �′ 6 3.28. For each plate, bubbles are positioned above a hole

and between-holes. The dashed lines follow bubbles above holes and the solid lines follow

bubbles between-holes. It is immediately clear that there is a distinct separation of data,

with bubbles above holes displacing significantly less, and rebounding to a smaller size, than

bubbles between-holes. However, as the standoff distance increases, the dashed and solid

lines converge. For the three plates with smaller holes, at sufficiently large standoff distances,

the lines merge completely and the data become independent of horizontal position (within

experimental variation). For these three data sets, the data become independent of horizontal

position at approximately W = 3. In general, as �′ decreases, convergence occurs at lower

standoff distances. Thus, the horizontal position of the bubble is unimportant for displacement

and rebound size when the pattern of holes is on a scale smaller than the bubble size. This

is confirmed by figure 10 where the porous plate data (with �′
= 0.13) for above a hole

and between-holes are plotted together and show no greater spread than the solid plate data

in the same figure. In addition, for small holes (low ,/'0) at very low void fractions, the

dimensionless area �′ can be large but does not result in significant splitting of the data.

The data in figure 12 represent three different hole shapes: a square, a circle, and a

triangle. The square and smaller circular holes have very similar area ratios and produce

almost identical curves for both displacement and rebound size. The triangular holes are

slightly smaller and show slightly less splitting of the data. Thus, using the dimensionless

area �′, the shape of holes can be considered unimportant. This can be explained by the short

timescale on which these flows occur. In less rapid flows, the shape of a hole is important due

to the viscous boundary layers that form around the edge of the hole. Shapes such as triangles

have a greater perimeter per unit area when compared to circles. This increased surface leads

to more boundary layers forming which further restrict the flow. However, for flow induced

by a bubble collapsing near a hole, there is insufficient time for a significant viscous boundary
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(a) (b) (c)

Figure 11: Top-down view diagrams of porous plates with circular holes (a), square holes
(b), and triangular holes (c). The tessellation pattern is shown by the green dashed lines
with a single tessellation area shaded in green. The orange circles indicate the size of a

bubble with equal area to each tessellation area such that �′
= 1.
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Figure 12: (0) Normalised displacement plotted against standoff distance. (1) Normalised
rebound radius plotted against standoff distance. Data are plotted for four porous plates

with tesselation unit areas �′ > 1.5. Data for bubbles positioned between-holes are traced
by solid lines and data for bubbles positioned above holes are traced by dashed lines. Data

markers have shapes corresponding to the shape of holes in the plates (circles, squares,
and triangles).

layer to form and thus the shape of the hole becomes insignificant. This can be shown with

the approximate relation X ∼
√
aC where X is the approximate scale of the boundary layer

thickness, a is the kinematic viscosity, and C is the time over which the boundary layer would

develop. The kinematic viscosity of water at room temperature is approximately 1 × 10−6

m2 s−1. From our experiments, a typical collapse occurs in approximately 0.5 ms. Thus, the

boundary layer formed in this time would be on the scale of 0.02 mm which is much smaller

than the size of the holes and so can be considered insignificant.

4.4. Variation of displacement and rebound ratio with void fraction

From the observations above, we can neglect the influence of hole size, hole shape, and

horizontal position for porous plates with dimensionless area �′ < 1.5 or with small holes

(,/'0 < 1). All analysis hereafter relies only on data within this regime and we now further

investigate the influence of the void fraction.

Starting from a solid plate, with zero void fraction, and then increasing the void fraction,



Bubble collapse near porous plates 13

2 4 6 8

γ = Y/R0

10−1

100
∆
/
R

0

(a)

0.0 0.2 0.4 0.6

φ

2 4 6 8

γ = Y/R0

0.2

0.4

0.6

0.8

R
1
/
R

0

(b)

0.0 0.5 1.0

φ

0.0

0.2

0.4

0.6

0.8

∆
/
R

0

(c) γ = 2

γ = 3

γ = 4

0.0 0.5 1.0

φ

0.3

0.4

0.5

0.6

0.7

R
1
/
R

0

(d)

Figure 13: (0) Normalised displacement plotted against standoff distance for a range of
void fractions q. (1) Bubble rebound radius ratio plotted against standoff distance for a

range of void fractions q. Straight-line curve fits are shown for three representative cases
in each of (0) and (1). (2) Normalised displacement plotted against void fraction q for

standoff distances corresponding to the grey dashed lines in (0). (3) Bubble rebound radius
ratio plotted against void fraction for standoff distances corresponding to the grey dashed
lines in (1). Only data for plates with �′ < 1.5 or ,/'̄0 < 1 are included in these plots.

figure 13(a) shows that displacement decreases as void fraction increases. Similarly, figure

13(b) shows that the rebound size ratio decreases as the void fraction increases. Both of these

confirm that higher plate porosity results in less asymmetry in the bubble collapse. Despite

the decrease in displacement and rebound ratio with increasing void fraction, the gradient

remains remarkably similar for all void fractions.

To find out how the displacement and rebound size depend on void fraction, we take

vertical slices at three stand-off distances. For each slice, the displacement and rebound size

values at a given void fraction are calculated from straight-line fits to each data set shown in

figures 13(a) and 13(b). Three such curve fits are shown on each of figures 13(a) and 13(b)

as examples. Figures 13(c) and 13(d) show displacement and rebound size ratio as functions

of void fraction for three values of standoff distance. The displacement and rebound radius

both decrease as the void fraction increases. Both displacement and rebound radius show

fairly uniform sensitivity to void fraction across different standoff distances, although the

displacement is marginally more sensitive at low standoff distances.
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5. Anisotropy parameter for porous plates

In the previous section, we have shown how displacement and radius ratio vary with both

standoff distance and void fraction. In order to unify these parameters, and compare these

results with other geometries, it is desirable to formulate the anisotropy parameter as a

function of standoff distance and void fraction. We assume that the anisotropy of a porous

plate is only a function of void fraction q and standoff distance W.

Z = 5 (q, W) (5.1)

In this section we present two methods of determining the function 5 (q, W).

5.1. Displacement and rebound ratio as a function of anisotropy

The first formulation of the anisotropy parameter is the implementation of the numerical

method described in section 3.2. Using this method, experimental measurements of dis-

placement and rebound ratio can be plotted as a function of the anisotropy predictions as

shown in figure 14 (parts a and b). Although not perfect, it shows reasonable collapse of

most data onto a single curve for each of the two measurements.

Using the numerical model, we find that the anisotropy parameter varies almost exactly

with W−2 across all porous plates. This is consistent with all the other anisotropy functions

for flat geometries presented by Supponen et al. (2016). Thus, we simplify equation 5.1 to

Z = 6(q)W−2, (5.2)

leaving only the function 6(q) to be determined. Using the numerical model, the prefactor

6(q) is plotted as the orange line in figure 15. This was computed for a 50 mm × 50 mm

plate using 19 756 elements, with element lengths ranging between 0.35 mm and 0.42 mm,

where larger elements were used around the edge of the plate. As the void fraction increases,

the prefactor 6(q) decreases. At a void fraction q = 0, identically a solid plate, the prefactor

approaches the solution for a solid plate 6(0) = 0.195. Notably, due to differences between

the numerical model and analytic solution for a flat plate, the boundary element method

solution does not reach 0.195. At the opposite limit, with void fraction q = 1, the plate does

not exist, resulting in zero anisotropy, thus 6(1) = 0. Between these limits the gradient of the

prefactor is highest at low void fractions, indicating higher sensitivity to void fraction when

the void fraction is low. This conclusion is also reflected in the shape of the curves in figure

13(c, d).

The second formulation for the anisotropy parameter assumes that displacement is solely

a function of the anisotropy parameter Z and maintains the assumption that the anisotropy

can be written as equation 5.2. The analytic solution for a solid plate (6(0) = 0.195) can be

applied to the solid plate data to give the measured displacement as a function of anisotropy.

Then, for each porous plate data set, the prefactor 6(q) can be fitted such that the porous plate

data follows the same curve for displacement against anisotropy. This curve fit is performed

using the logarithmic least-squares difference between each data set and the curve fit on the

solid plate data.

Using the fitted prefactors 6(q), the data collapses very well onto single curves for

displacement and rebound radius as shown in figure 14 parts (c) and (d). It should be noted

that only the displacement curve is fitted and the resulting values cause the rebound radius

data to collapse as well, suggesting that these values are representative of the underlying

physics and not simply overfitting to the data.

The fitted prefactors are shown alongside the numerically predicted curve in figure 15 with

vertical error bars of one standard deviation of the least-squares fit. In this plot, different
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Figure 14: Normalised displacement (0) and rebound radius ratio (1) plotted against the
anisotropy parameter magnitude Z predicted by the numerical model. Normalised

displacement (2) and rebound radius ratio (3) plotted against the anisotropy parameter
magnitude Z estimated by fitting displacement data to the solid plate data. Data are

coloured by void fraction q. The grey data points in (2) and (3) are from
Andrews & Peters (2022). The black dashed line is a curve fit to the porous plates data.

The black dash-dotted line is the curve fit from Andrews & Peters (2022). The black
dash-dot-dotted line is derived from the curve fit of Supponen et al. (2018).

horizontal positions are treated as distinct data sets, resulting in two data points for each

porous plate which are typically very closely aligned.

Figure 15 shows that the boundary element method agrees well with the experimentally

determined prefactors. However, at low void fractions the experimental values tend to be

below the numerical predictions, whereas at higher void fractions they tend to be above. This

may suggest that there are some nuances to the behaviour that the numerical model cannot

capture.

An empirical curve fit for the anisotropy parameter is desirable in order to further reduce the

cost of modelling porous boundaries. It is noted that the two limits of 6(q) are 6(0) = 0.195

and 6(1) = 0. We assume that 6(q) is a non-linear, smooth function between these limits of

the form

6(q) = 0

0.195q: + 0
− 0 (5.3)

where : is the single parameter to be fitted and 0 = 1−0.195 = 0.805. Using the experimental

data shown in figure 15, the fitted parameter : is found to be 0.58 with a standard deviation of
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Figure 15: Prefactors 6(q) where Z = 6(q)W−2 plotted against void fraction q. Experiment
data points are computed from fitting displacement data for porous plates with the solid
plate data. Horizontal error bars represent the range of possible void fractions for each

data point. Vertical error bars are the standard deviation from the least squares fit of 6(q).
Points are coloured by the dimensionless width of the holes.

0.014. This curve fit is plotted alongside the data in figure 15 which shows good agreement

with experimental data. The anisotropy can therefore be written as

Z =

(

0.805

0.195q0.58 + 0.805
− 0.805

)

W−2 (5.4)

for all q ∈ [0, 1], effectively providing a single equation for displacement and rebound radius

for any void fraction and standoff distance.

5.2. Disparity with other experimental methodologies

Computing the anisotropy for this data allows it to be compared to prior research, as shown in

figure 14 (parts c and d). Figure 14(d) shows the curve presented by Supponen et al. (2017)

as well as data points from Andrews & Peters (2022) which used a different experimental

method than the present research. Although there is significant spread in the data from

Andrews & Peters (2022), it does not follow the same curve as the present research. The curve

presented by Supponen et al. (2017) is even further different. This reinforces our previous

suggestion that there is likely another factor that varies between experimental methodologies

that can significantly affect the bubble rebound size (Andrews & Peters 2022).

Figure 14(c) shows data points and the curve fit for displacement against anisotropy for a

range of complex geometries presented by Andrews & Peters (2022). This collapsed curve

is markedly different to the curve presented in the present research. The principle difference

between the two works is that the previous research used a microscope objective to create

bubbles whereas the current research uses an off-axis parabolic mirror. This difference in

displacement is likely partly due to smaller rebounds, but may also be affected by bubble

morphology due to the difference in plasma shapes created by different focusing optical

elements.

6. Conclusion

In this research, we have investigated how a pattern of through-holes in a rigid boundary

affect the dynamics of a collapsing bubble. We have demonstrated how bubbles expand



Bubble collapse near porous plates 17

preferentially towards the holes and less towards the solid parts of the boundaries. We have

shown that the displacement and rebound radius do not depend significantly on the shape of

the holes, and the size of the holes only becomes important when comparable to the bubble

size (dimensionless tessellation unit area �′ > 1.5).

The bubble displacement and rebound radius depend strongly on both the standoff distance

and void fraction of the porous plate. These parameters can be unified in terms of the

anisotropy parameter with equation 5.4. Using this unified parameter, all data for porous plates

collapse onto single curves for displacement and rebound radius. However, the collapsed

curves vary from those found for our previous work (Andrews & Peters 2022) which used a

different experimental method.

This work provides a solid first step towards characterising bubble behaviour near

porous plates and connects this geometry to the wider framework of investigations using

the anisotropy parameter. Further work is required to connect this framework of single-

bubble collapse to applications such as ultrasonic cleaning. For example, understanding the

geometric distribution of bubble collapse events induced by an ultrasound field, the combined

effect of multiple bubbles, and the relation between surface shear stress and the anisotropy

parameter.
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